

Fundamentals of Pulsed Plasmas for Materials Processing

André Anders

Lawrence Berkeley National Laboratory,
University of California, Berkeley, California 94720
aanders@lbl.gov

This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

Outline

- □ Plasma
- □ Sheaths
- Dimensionless parameters
- □ *Pulsed* plasmas and sheaths
- □ Selected examples of pulsed plasma processing:
 - Plasma Immersion Ion Processing (PIIP, pulsed CVD)
 - Pulsed filtered arc deposition, and MePIIID
 - Pulsed magnetron sputtering

This talk is a mixture of tutorial, review, and original research paper.

Pulsed Plasmas

Plasma

- □ 4th state of matter
- □ ensemble of charged particles with collective behavior
- □ in the lab generated by some sort of discharge

Characteristic Parameters of Plasmas

Debye length

$$\lambda_{De} = \left(\frac{\varepsilon_0 k T_e}{n_e e^2}\right)^{1/2}$$

Plasma frequency

$$\omega_{pl,e} = \left(\frac{n_e e^2}{\varepsilon_0 m_e}\right)^{1/2}$$

Distribution Functions and Rate Coefficients

Mean free path
$$\lambda_{\alpha} = \left(\sum_{\beta} n_{\beta} \sigma_{\alpha\beta}\right)^{-1}$$

Collisions in Plasmas

Temperature (Non-)Equilibrium

André Anders, Plasma Applications Group

Plasma and Sheaths

Sheaths and Presheath

 $n_{\rm e} = n_{\rm i}$

Sheath

edge

Bohm velocity

$$u_{is} = u_{Bohm} = \left(\frac{kT_e}{m_i}\right)^{1/2}$$

Re-interpretation of Child Law (1911) for Plasma Sheath

Poisson equation

$$\varepsilon_0 \nabla \cdot \mathbf{E} = \rho$$

Space charge limited current

self-adjusting sheath (Child Sheath)

Child current

$$j_i = \frac{4}{9} \varepsilon_0 \left(\frac{2e}{m_i}\right)^{1/2} \frac{V_0^{3/2}}{s^2}$$

$$s_{Child} = \frac{\sqrt{2}}{3} \lambda_{De} \left(\frac{2eV_0}{kT_e} \right)^{3/4}$$

Dimensionless Parameters

dimensionless parameter =

quantity of unit X

characteristic parameter of unit X

□ Examples:

degree of ionization

$$\alpha = \frac{n_i}{n_i + n_0}$$

duty cycle

$$\delta = \frac{t_{on}}{t_{on} + t_{off}}$$

Knudsen number

$$Kn = \lambda/\ell$$

pulse rise parameter

$$au_{rise} = t_{rise} \omega_{pl,i}$$

Dimensionless Parameters

□ Advantage of using dimensionless parameters:

In a *dynamic* situation, usually both the normalized and the normalizing quantities change. The elegance and power of dimensionless parameters is to be able to immediately evaluate a physical situation.

□ Example:

collisionality in the sheath region =

mean free path sheath thickness

Pulsed Plasmas

- ☐ When pulses are applied: new set of parameters or "control knobs" appear:
 - pulse duration
 - duty cycle
 - pulse amplitude

$$\delta = \frac{t_{on}}{t_{on} + t_{off}}$$

- □ distinction between average and pulse parameters
- □ extreme plasma parameters are possible during pulses
- □ process can have momentary high power, leading to more energetic and ionized particles in plasma

Energetic Condensation

Ion Energy

Energetic Relation Between Implantation and Deposition Processes

Film growth is still possible for low duty cycle of bias

sputter yield = 1 for E_i =300-1200 eV

Subplantation

Deposition

Ion plating, MePIIID

cathodic arc deposition

sputtering

evaporation

- □ Resource: PIII theory.
- □ conformal ion implantation of plasma ions by acceleration in high voltage sheath

Sheath Development

Application of dimensionless parameters:

Ion matrix sheath exists only if

$$\tau_{rise} = t_{rise} \omega_{pl,i} < 1$$

Sheath Development

• If pulse rise is slow:

$$\tau_{rise} = t_{rise} \omega_{pl,i} > 1$$

Ion matrix sheath does not exist but time-depended Child sheath.

Examples of dimensionless parameters

• If pulse sequence is fast
$$\tau_{off} = t_{off}/t_{restore} < 1$$

where
$$t_{restore} \approx \frac{s_{Child}^2}{D_{ambi}}$$

Multiple-pulse effects exist.

$$D_{ambi} \approx kT_e \mu_i / e$$

B. Wood, in: *Handbook of PIII&D*, Wiley, N.Y. 2000

B. Wood, in: *Handbook of PIII&D*, Wiley, N.Y. 2000

B. Wood, in: *Handbook of PIII&D*, Wiley, N.Y. 2000

Multiple-Pulse Effects at High Duty Cycle

Multiple-Pulse Effects at High Duty Cycle

Dynamic Sheath

Dimensionless parameter as condition for conformal ion treatment:

$$\Lambda = \frac{\text{characteristic feature size}}{\text{sheath thickness}} > 1$$

W. Möller, et al., Surf. Coat. Technol. 116-119 (1999) 1

Plasma Immersion Ion Processing

- □ PIIP one kind of pulsed plasma CVD proposed at LANL
 - M. Nastasi, et al., Surf. Coat. Technol. **136** (2001) 162
 - K.C. Walter, et al., Surf. Coat. Technol. **156** (2002) 306
- □ Plasma Immersion Technique with
 - □ carbon-containing gases (e.g. C₂H₂) for DLC films
 - organo-metallic precursor gases for e.g. metal carbonitride films
- pulsed sheath is utilized
 - to attract ions from plasma for energetic condensation AND
 - to accelerate secondary electrons for plasma generation

Plasma Immersion Ion Processing

- □ designed for 3-dim coatings
- however, uniformity / conformal treatment only if

 $\frac{\text{sheath size}}{\text{feature size}} < 1$

Effect of self-ion bombardment on film microstructure

- □ Densification of Ti film by Ti ions (self-ion assistance)
- □ MC computer simulation (1987)

Martin et al. JVST 5 (1987) 22

Pulsed Filtered Cathodic Arcs

- clean metal plasma
- ta-C
- metal films
- compounds

DERKELEY LAD

MePIIID

Metallization by MePIIID

Copper metallization of sub-\mu trenches and vias

voids form if vapor / plasma does not have correct impact angle and energy

perfect filling of trenches

O.R. Monteiro, J. Vac. Sci. Technol. B 17 (1999) 1094

Diffusion Barriers by MePIIID

- □ Copper diffuses in silicon, hence need for diffusion barrier
- ☐ Ta and TaN can serve as barrier
- □ can be deposited conformally using MePIIID

O.R. Monteiro, J. Vac. Sci. Technol. B **17** (1999) 1094

Initial Plasma Composition

□ Plasma can be significantly contaminated at beginning of each pulse, example: Ta arc, 250 μs

G.Yu. Yushkov et al., IEEE Trans. Plasma Sci. 26 (1998) 220.

Temporal Development of Plasmas

Example: Al plasma in oxygen background gas

J. M. Schneider, et al., Appl. Phys. Lett. **75**, (1999) 612.

Effect of self-ion bombardment on film microstructure

- □ Si substrate, PIII intermixed layer (C, 2.2 keV 2μs on/6 μs off)
- "hard" a-C /
 "superhard" a-C

 (4 double layers, with
 2200 eV and 100 eV,
 each)

Pulsed Sputtering

- □ Proposed by Kouznetsov and co-workers in late 1990s
- □ use of traditional sputter magnetron
- □ increase power during pulses by > 2 orders of magnitude
- □ average power is within acceptable level by using low duty cycle
- □ observe increased degree of ionization

Voltage-Current Waveform for Pulsed Sputtering

From: V. Kouznetsov, et al., Surf. Coat. Technol. 122, 290-293 (1999).

Distribution Functions and Rate Coefficients

Mean free path
$$\lambda_{\alpha} = \left(\sum_{\beta} n_{\beta} \sigma_{\alpha\beta}\right)^{-1}$$

V-I Characteristics of a Magnetron Discharge

A similar result was obtained for **Cr**, see: A.P. Ehiasarian, et al., *Vacuum* **65**, 147 (2002).

Physics of Pulsed Sputtering

□ Transition in characteristics:

Physics of Pulsed Sputtering

- Knudsen number for ionization $Kn = \lambda_{ion} / \ell \ll 1$
- thermalization
- □ ionization
- ☐ If there was no thermalization of sputtered atoms with background gas $u_{a0} = \sqrt{2E_{a0}/m_a} \sim 1000 \text{ m/s}$
- □ thermalized and ionized atoms may return to target:

Self-sputtering

Self-Sustained Self-Sputtering

Self-Sputter Yield

Summary / Conclusions

□ Pulsed plasma processing

- high kinetic energy in allows films growth to occur much further from thermodynamic equilibrium than with continuous processing
- extreme pulsed plasma parameters can be reached
- new process "control knobs" appear, such as duty cycle and pulse duration

□ Many examples

- here in detail: emerging technology of pulsed sputtering
- for many materials: pulsed sputtering may lead to the mode of pulsed, self-sustained self-sputtering